已知f(x)是R上的偶函数,且在(0,正无穷)上单调递增,并且f(x)
1个回答
展开全部
设x1f(x2)
g(x1)-g(x2)
=1/f(x2)-1/f(x1)
=[f(x1)-f(x2)]/f(x1)f(x2)
f(x1)-f(x2)>0,f(x1)f(x2)>0
g(x1)>g(x2)
所以1/f(x)在(负无穷,0)上是减函数.
老哥,单调递增就一定>0,老师什么时候教你的?
y=-1/x,
在(0,正无穷)是递增的,但y恒小于0.
有没有看到这一句:
并且f(x)
g(x1)-g(x2)
=1/f(x2)-1/f(x1)
=[f(x1)-f(x2)]/f(x1)f(x2)
f(x1)-f(x2)>0,f(x1)f(x2)>0
g(x1)>g(x2)
所以1/f(x)在(负无穷,0)上是减函数.
老哥,单调递增就一定>0,老师什么时候教你的?
y=-1/x,
在(0,正无穷)是递增的,但y恒小于0.
有没有看到这一句:
并且f(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询