非齐次线性方程组的解的三种情况是什么?
展开全部
非齐次线性方程组的解的三种情况是只有零解,有非零解,有无穷多解。
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r,把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于C1,C2……Cn-r,即可写出含n-r个参数的通解。
线性化关系
在例子中(不是特例)变量y是x的函数,而且函数和方程的图像一致。
通常线性方程在实际应用中写作:
y=f(x)。
这里f有如下特性:
f(x+y)=f(x)+f(y)。
f(ax)=af(x)。
这里a不是向量。
一个函数如果满足这样的特性就叫做线性函数,或者更一般的,叫线性化。
因为线性的独特属性,在同类方程中对线性函数的解决有叠加作用。这使得线性方程最容易解决和推演。
创远信科
2024-07-24 广告
2024-07-24 广告
作为上海创远仪器技术股份有限公司的团队成员,我们积累了广泛的介电常数数据。这些数据覆盖了从常见物质如空气、水、塑料到专业材料如聚苯乙烯、环乙醇等的介电常数。通过精心整理和分析,我们汇编了介电常数表合集,为客户提供了宝贵的参考信息。这些数据不...
点击进入详情页
本回答由创远信科提供
展开全部
非齐次线性方程组的解三种情况分别是无解、有无穷多解、有唯一解。
判别法:
当非齐次线性方程组对应的系数矩阵的秩小于增广矩阵的秩,即r(A)<r(A,b),此时无解。
当非齐次线性方程组对应的系数矩阵的秩等于增广矩阵的秩,即r(A)=r(A,b),此时有解。
有解又可分为以下两种情况:
当非齐次线性方程组对应的系数矩阵的秩等于增广矩阵的秩,且均小于系数矩阵的列数n,即r(A)=r(A,b)<n,有无穷多解。
当非齐次线性方程组对应的系数矩阵的秩等于增广矩阵的秩,且均等于系数矩阵的列数n,即r(A)=r(A,b)=n,有唯一解。
判别法:
当非齐次线性方程组对应的系数矩阵的秩小于增广矩阵的秩,即r(A)<r(A,b),此时无解。
当非齐次线性方程组对应的系数矩阵的秩等于增广矩阵的秩,即r(A)=r(A,b),此时有解。
有解又可分为以下两种情况:
当非齐次线性方程组对应的系数矩阵的秩等于增广矩阵的秩,且均小于系数矩阵的列数n,即r(A)=r(A,b)<n,有无穷多解。
当非齐次线性方程组对应的系数矩阵的秩等于增广矩阵的秩,且均等于系数矩阵的列数n,即r(A)=r(A,b)=n,有唯一解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于
,即可写出含n-r个参数的通解。
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于
,即可写出含n-r个参数的通解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询