矩形有几种证法
5种。
1、有一个角是直角的平行四边形是矩形。
2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
4、定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。
5、对角线相等且互相平分的四边形是矩形。
例题:
已知:如下图,在ABCD中,M为BC中点,∠MAD=∠MDA.求证:四边形ABCD是矩形。
分析:根据定义去证明一个角是直角,由△ABM≌DCM(SSS)即可实现。
证明:
因为平行四边形ABCD
故:AB=CD,AB‖CD
故:∠B+∠D=180度
因为M是BC中点
故:BM=MC
因为∠MAD=∠MDA
故:MA=MD
故:△MAB≌△MDC(SSS)
故:∠B=∠D=90度
故:四边形ABCD是矩形(有一个内角为90度的平行四边形是矩形)
扩展资料:
运用:黄金矩形
黄金矩形的长宽之比确切值为(√5+1)/2,在应用上一般取它的近似值1.618。
黄金矩形长宽之比为黄金分割率,换言之,矩形的长边为短边1.618倍。在人类的长期进化过程中,骨骼中以头骨和腿骨变化最大,外形躯身由于十分近似黄金矩形而变化较小,人体中有许多比例关系接近0.618。
在很多艺术品以及大自然中都能找到它,希腊雅典的巴特农神庙就是一个很好的例子。达芬奇的脸符合黄金矩形,同样也应用了该比例布局。黄金分割率和黄金矩形能够给画面带来美感,令人愉悦。从而使人体美在几十万年的历史积淀中固定下来。
于是黄金分割律作为一种重要形式美法则。
参考资料来源:百度百科-黄金矩形
推荐于2017-11-25
2、对角线相等的平行四边形是矩形
3、有三个角是直角的四边形是矩形
4、对角线相等且互相平分的四边形是矩形
2013-06-25
2、对角线相等的平行四边形是矩形
3、有三个角是直角的四边形是矩形
4、对角线相等且互相平分的四边形是矩形
1.有一个角是直角的平行四边形是矩形
2.有三个角是直角的四边形是矩形
3.有四个角相等的四边形是矩形
4.对角线相等且互相平分的四边形是矩形。
5.定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。
6.对角线相等的平行四边形是矩形