展开全部
令x=atanu,则:dx=a[1/(cosu)^2]du,
∴∫[1/√(x^2+a^2)]dx
=(1/a)∫{1/√[(tanu)^2+1]}·a[1/(cosu)^2]du
=∫cosu[1/(cosu)^2]du
=∫{1/[1-(sinu)^2]}d(sinu)
=(1/2)∫[1/(1+sinu)+1/(1-sinu)]d(sinu)
=(1/2)∫[1/(1+sinu)]d(1+sinu)-(1/2)∫[1/(1-sinu)]d(1-sinu)
=(1/2)ln(1+sinu)-(1/2)ln(1-sinu)+C
=(1/2)ln[(1+sinu)/(1-sinu)]+C
=(1/2)ln[(1+sinu)/cosu]^2+C
=ln[(1+sinu)/cosu]+C
=ln(tanu+1/cosu)+C
=ln{x/a+√[(tanu)^2+1]}+C
=ln{x/a+√[(x/a)^2+1]}+C
=arsh(x/a)+C。
∴∫[1/√(x^2+a^2)]dx
=(1/a)∫{1/√[(tanu)^2+1]}·a[1/(cosu)^2]du
=∫cosu[1/(cosu)^2]du
=∫{1/[1-(sinu)^2]}d(sinu)
=(1/2)∫[1/(1+sinu)+1/(1-sinu)]d(sinu)
=(1/2)∫[1/(1+sinu)]d(1+sinu)-(1/2)∫[1/(1-sinu)]d(1-sinu)
=(1/2)ln(1+sinu)-(1/2)ln(1-sinu)+C
=(1/2)ln[(1+sinu)/(1-sinu)]+C
=(1/2)ln[(1+sinu)/cosu]^2+C
=ln[(1+sinu)/cosu]+C
=ln(tanu+1/cosu)+C
=ln{x/a+√[(tanu)^2+1]}+C
=ln{x/a+√[(x/a)^2+1]}+C
=arsh(x/a)+C。
追问
=(1/2)ln[(1+sinu)/(1-sinu)]+C
=(1/2)ln[(1+sinu)/cosu]^2+C
这是怎么等起来的?
追答
(1+sinu)/(1-sinu)
=(1+sinu)^2/[(1-sinu)(1+sinu)]
=(1+sinu)^2/[1-(sinu)^2]
=(1+sinu)^2/(cosu)^2
=[(1+sinu)/cosu]^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询