设X1,X2,...Xn是取自正态总体X~N(μ,σ^2)的一个样本,则1/(σ^2)∑(X-μ)^2 服从的分布是()

请给出详细的解答过程,谢谢!... 请给出详细的解答过程,谢谢! 展开
旅游小达人Ky
高粉答主

2020-12-30 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1893
采纳率:100%
帮助的人:40.9万
展开全部

服从X^2( n-1)分布。

设X1,X2,...Xn为来自正态总体X~N(μ,σ^2)的一个样本,μ已知,求σ^2的极大似然估计

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]

L=f(x1)*f(x2)...f(xn)=[1/(2piσ^2)^0.5]^n*exp[-(x1-μ)^2/2σ^2+...-(xn-μ)^2/2σ^2]

L=[1/(2piσ^2)^0.5n]*exp{-[(x1-μ)^2/+...+(xn-μ)^2]/2σ^2}

lnL(对σ^2的导数)=-n/(2σ^2)+[(x1-μ)^2/+...+(xn-μ)^2]/2σ^4

lnL(对σ^2的导数)=0

所以-n/(2σ^2)+[(x1-μ)^2/+...+(xn-μ)^2]/2σ^4=0

σ^2=[(x1-μ)^2/+...+(xn-μ)^2]/n

扩展资料

正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。

μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。

帐号已注销
2020-12-29 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:170万
展开全部

^^f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]

f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]

L=f(x1)*f(x2)...f(xn)=[1/(2piσ^2)^0.5]^n*exp[-(x1-μ)^2/2σ^2+...-(xn-μ)^2/2σ^2]

L=[1/(2piσ^2)^0.5n]*exp{-[(x1-μ)^2/+...+(xn-μ)^2]/2σ^2}

lnL=ln[1/(2piσ^2)^0.5n]-[(x1-μ)^2/+...+(xn-μ)^2]/2σ^2

lnL=-0.5n*ln(2piσ^2)-[(x1-μ)^2/+...+(xn-μ)^2]/2σ^2

lnL(对σ^2的导数)=-n/(2σ^2)+[(x1-μ)^2/+...+(xn-μ)^2]/2σ^4

lnL(对σ^2的导数)=0

所以-n/(2σ^2)+[(x1-μ)^2/+...+(xn-μ)^2]/2σ^4=0

σ^2=[(x1-μ)^2/+...+(xn-μ)^2]/n

扩展资料:

μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。

参考资料来源:百度百科-正态分布

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xianna121
2013-07-07
知道答主
回答量:4
采纳率:0%
帮助的人:7.7万
展开全部
服从X^2( n-1)分布,那个X不是未知数X,长得像而已,手机打不出来,抱歉。
因为(x-u )^2求和,等于n-1倍的样本方差平方,然后就是定理了,手机不好打阿~
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式