已知某二阶线性非齐次微分方程的三个解,求此微分方程.
例如知道三个解:y1=xe^x,,,,,y2=xe^x+e^-x,,,,y3=xe^x+e^2x-e^-x...
例如知道三个解:y1=xe^x,,,,,y2=xe^x+e^-x,,,,y3=xe^x+e^2x-e^-x
展开
2个回答
展开全部
y''-y'-2y=e^x-2xe^x。
某二阶线性非齐次微分方程的三个解:
y1=xe^x,,,,,y2=xe^x+e^-x,,,,y3=xe^x+e^2x-e^-x
那么y2-y1=e^-x,y3-y2=e^2x是二阶线性齐次微分方程的两个解:,故二阶线性齐次微分方程的特解C1e^-x+C2e^2x,-1,2是特征根,二阶线性齐次微分方程为:y''-y'-2y=0
设y''-y'-2y=f(x),y1=xe^x是解,代入得:
f(x)=2e^x+xe^x-xe^x-e^x-2xe^x=e^x-2xe^x
所求非齐次微分方程:y''-y'-2y=e^x-2xe^x
简介
微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。
物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。
展开全部
某二阶线性非齐次微分方程的三个解:
y1=xe^x,,,,,y2=xe^x+e^-x,,,,y3=xe^x+e^2x-e^-x
那么y2-y1=e^-x,y3-y2=e^2x是二阶线性齐次微分方程的两个解:,故二阶线性齐次微分方程的特解C1e^-x+C2e^2x,-1,2是特征根,二阶线性齐次微分方程为:y''-y'-2y=0
设y''-y'-2y=f(x),y1=xe^x是解,代入得:
f(x)=2e^x+xe^x-xe^x-e^x-2xe^x=e^x-2xe^x
所求非齐次微分方程:y''-y'-2y=e^x-2xe^x
y1=xe^x,,,,,y2=xe^x+e^-x,,,,y3=xe^x+e^2x-e^-x
那么y2-y1=e^-x,y3-y2=e^2x是二阶线性齐次微分方程的两个解:,故二阶线性齐次微分方程的特解C1e^-x+C2e^2x,-1,2是特征根,二阶线性齐次微分方程为:y''-y'-2y=0
设y''-y'-2y=f(x),y1=xe^x是解,代入得:
f(x)=2e^x+xe^x-xe^x-e^x-2xe^x=e^x-2xe^x
所求非齐次微分方程:y''-y'-2y=e^x-2xe^x
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询