求下列极限的值:lim(1 /√ n^2+1+1 /√ n^2+2+…1 / √n^2+n).
1个回答
展开全部
因为1/√(N^2+1)+1/√(N^2+2)+...+1/√(N^2+N
< 1/√N^2+1/√N^2+`...+1/√N^2 = 1
1/√(N^2+1)+1/√(N^2+2)+.+1/√(N^2+N)
> 1/√(N^2+N)+1/√(N^2+N)+...+1/√(N^2+N)
= N/(√N^2+N)
N无穷时,limN/(√N^2+N))=1
又根据两边夹定理,即可证明出1/√(N^2+1)+1/√(N^2+2)+`````+1/√(N^2+N)的极限等于1,N趋向无穷
< 1/√N^2+1/√N^2+`...+1/√N^2 = 1
1/√(N^2+1)+1/√(N^2+2)+.+1/√(N^2+N)
> 1/√(N^2+N)+1/√(N^2+N)+...+1/√(N^2+N)
= N/(√N^2+N)
N无穷时,limN/(√N^2+N))=1
又根据两边夹定理,即可证明出1/√(N^2+1)+1/√(N^2+2)+`````+1/√(N^2+N)的极限等于1,N趋向无穷
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询