K-近邻算法(K-NN)

 我来答
机器1718
2022-06-03 · TA获得超过6839个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:161万
展开全部

给定一个训练数据集,对于新的输入实例, 根据这个实例最近的 k 个实例所属的类别来决定其属于哪一类 。所以相对于其它机器学习模型和算法,k 近邻总体上而言是一种非常简单的方法。

找到与该实例最近邻的实例,这里就涉及到如何找到,即在特征向量空间中,我们要采取 何种方式来对距离进行度量

距离的度量用在 k 近邻中我们也可以称之为 相似性度量 ,即特征空间中两个实例点相似程度的反映。在机器学习中,常用的距离度量方式包括欧式距离、曼哈顿距离、余弦距离以及切比雪夫距离等。 在 k 近邻算法中常用的距离度量方式是欧式距离,也即 L2 距离, L2 距离计算公式如下:

一般而言,k 值的大小对分类结果有着重大的影响。 当选择的 k 值较小的情况下,就相当于用较小的邻域中的训练实例进行预测,只有当与输入实例较近的训练实例才会对预测结果起作用。但与此同时预测结果会对实例点非常敏感,分类器抗噪能力较差,因而容易产生过拟合 ,所以一般而言,k 值的选择不宜过小。但如果选择较大的 k 值,就相当于在用较大邻域中的训练实例进行预测,但相应的分类误差也会增大,模型整体变得简单,会产生一定程度的欠拟合。所以一般而言,我们需要 采用交叉验证的方式来选择合适的 k 值

k 个实例的多数属于哪个类,明显是多数表决的归类规则。当然还可能使用其他规则,所以第三个关键就是 分类决策规则。

回归:k个实例该属性值的平均值

它是一个二叉树的数据结构,方便存储 K 维空间的数据

KNN 的计算过程是大量计算样本点之间的距离。为了减少计算距离次数,提升 KNN 的搜索效率,人们提出了 KD 树(K-Dimensional 的缩写)。KD 树是对数据点在 K 维空间中划分的一种数据结构。在 KD 树的构造中,每个节点都是 k 维数值点的二叉树。既然是二叉树,就可以采用二叉树的增删改查操作,这样就大大提升了搜索效率。

如果是做分类,你需要引用:from sklearn.neihbors import KNeighborsClassifier
如果是回归, 需要引用:from sklearn.neighbors import KNeighborsRegressor

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
迈杰
2024-11-30 广告
RNA-seq数据分析是转录组研究的核心,包括数据预处理、序列比对、定量分析、差异表达分析、功能注释和可视化等步骤。数据预处理主要是质量控制和去除低质量序列。序列比对使用HISAT2、STAR等工具将reads比对到参考基因组。定量分析评估... 点击进入详情页
本回答由迈杰提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式