负数与负数相乘为什么会得正?

 我来答
峤熠Kxvv
高粉答主

2021-12-04 · 万物逆旅、百代过客。
峤熠Kxvv
采纳数:194 获赞数:15501

向TA提问 私信TA
展开全部

因为两个负数相乘之所得就是两次反射的结果,必然得正。

克莱因利用线段操作和矩形面积巧妙地论证了“负负得正”这一规则的合理性,这是求助于几何直观。

此外,利用数轴也可以示范并合理化这一规则,只需观察任一正数乘以-1等价于将此正数在数轴上的对应点相对于原点做反射,在负方向上的对称点就是该正数乘以-1的结果。

依此,两个负数相乘之所得就是两次反射的结果,必然得正。这也是求助于几何直观。至于不借助直观,只靠纯逻辑的做法,克莱因也做了初步的论述。

有理数的乘法法则时,应当要求它满足乘法对于加法的分配律,以便把乘法与加法联系起来。

异号两数相乘得负数,并且把绝对值相乘。根据类似的理由,数学上规定:任何数与0相乘,都得0。数学上规定:同号两数相乘得正数,并且把绝对值相乘。

相反数模型:

把一个因数换成他的相反数,所得的积就是原来的积的相反数,故(-5)×(-3)=15。

用运算律的方法:

(-1)×(-1)

=(-1)×(-1)+0×(-1)

=(-1)×(-1)+[(-1)+1] ×1

=(-1)×(-1)+(-1) ×1+1×1

=(-1) ×(-1+1)+1

=1

反证法:

假设负负得正,则由假设:(-1)×(-1)=[2+(-1)]=(-1) ×2+(-1)。

另一方面:(-1)×(+1)=[1+(-2)] ×(+1)=1+(-2) ×1。

若正负得负,则由(1)得-1=-3,不可能:若正负得正,则由(2)得1=3。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式