Ax等于0为什么A的列向量线性相关?

 我来答
果果就是爱生活
高能答主

2021-12-08 · 专注生活教育知识分享
果果就是爱生活
采纳数:2071 获赞数:272267

向TA提问 私信TA
展开全部

Ax=0有非零解,存在不完全等于0的x1, x2, ......, xn,使得 x1a1+x2a2+......+xnan=0,A的列向量,所以a1, a2, ......,an 线性相关。

矩阵的秩和其列向量空间或者行向量空间的维数是一样的,矩阵A其行列式为0,说明这个矩阵是个方阵,我们设它为n×n的方阵,矩阵的秩是指最大规模非零子式的阶数,它的行列式是0。

说明它的秩只能是≤n-1,而列向量构成的向量空间的维数也只能是≤n-1,有n个列向量,如果线性无关的话,它们就能构成向量空间的一组基,那维数就是n,矛盾,所以一定线性相关。

向量组的相关性质

(1)当向量组所含向量的个数与向量的维数相等时,该向量组构成的行列式不为零的充分必要条件是该向量组线性无关;

(2)当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关;

(3)通过向量组的正交性研究向量组的相关性;

(4)通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式