为什么两定积分相乘能转化为重积分?而且一般上下限相同的的两定积分转化后就能利用对称性求解,我想知道

为什么两定积分相乘能转化为重积分?而且一般上下限相同的的两定积分转化后就能利用对称性求解,我想知道,这样转化对两定积分之间没有影响吗(两者之间联系会不会被破坏?)... 为什么两定积分相乘能转化为重积分?而且一般上下限相同的的两定积分转化后就能利用对称性求解,我想知道,这样转化对两定积分之间没有影响吗(两者之间联系会不会被破坏?) 展开
 我来答
wanzizALDX
高粉答主

2019-07-22 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1136
采纳率:100%
帮助的人:29.8万
展开全部

1、对于一般的二重积分 double integral,仅仅只是一个原则性积分,一般情况下根本是无法积出来的。

2、将二重积分适当地化为累次积分 iterated integral,积分或许就能迎刃而解;累次积分的顺序不对,可能就积分积不出来;有些积分无论怎样都积不出来的。

3、对于能积分出来的累次积分,其中最最特例是被积函数 integrand如同微分方程一般可以完全分离变量 separable ,而积分区域也是最特殊,各自从一侧积分到另一侧,既如同于矩形区域积分,又 如同在圆内用极坐标积分。

这种情况,恰恰就是两个积分的乘积。两个积分的乘积,变成了二重积分,就是这种特例的反演。最典型的例子就是概率统计中的正态函数,也就是误差函数,在从负无穷大到正无穷大的积分,或从0到无穷大的积分。

扩展资料:

积分的线性性质

性质1 (积分可加性) 函数和(差)的二重积分等于各函数二重积分的和(差),即

性质2 (积分满足数乘) 被积函数的常系数因子可以提到积分号外,即

 

(k为常数)

比较性

性质3 如果在区域D上有f(x,y)≦g(x,y),则

 

性质4 如果在有界闭区域D上f(x,y)=k(k为常数),σ为D的面积,则Sσ=k∫∫dσ=kσ。

PasirRis白沙
高粉答主

推荐于2017-11-21 · 说的都是干货,快来关注
知道大有可为答主
回答量:7357
采纳率:100%
帮助的人:3040万
展开全部
问得好!
楼主的问题,对很多人来说,都是想当然地接受。
毕竟用心读书的人太少了,用心死记硬背的人毕竟是主流!

楼主的问题反过来考虑,就自然而然了:
.
1、对于一般的二重积分 double integral,仅仅只是一个原则性积分,
一般情况下根本是无法积出来的。
.
2、将二重积分适当地化为累次积分 iterated integral,积分或许就能
迎刃而解;累次积分的顺序不对,可能就积分积不出来;有些积分
无论怎样都积不出来的。
.
3、对于能积分出来的累次积分,其中最最特例是被积函数 integrand
如同微分方程一般可以完全分离变量 separable ,而积分区域也是
最最特殊,各自从一侧积分到另一侧,既如同于矩形区域积分,又
如同在圆内用极坐标积分。
.
这种情况,恰恰就是两个积分的乘积。
.
两个积分的乘积,变成了二重积分,就是这种特例的反演。
最典型的例子就是概率统计中的正态函数,也就是误差函数,在从
负无穷大到正无穷大的积分,或从0到无穷大的积分。
.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式