为什么指数函数a>0?
①如果a=0,那么指数x≠0的时候,函数值等于1,x=0的时候,函数式无意义。
②如果a<0,那么a的x次方这个幂将不连续,且出现无法确定是否有意义的不定点。因为负数不能开偶数次方,所以当x是最简分数的时候,分母为偶数的指数将使得a的x次方无意义。
所以只能研究a大于0的情况下的指数函数。
一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。 [1] 注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
扩展资料:
当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候,y等于1。在x处的切线的斜率等于此处y的值乘上lna。即由导数知识得:
作为实数变量x的函数, 的图像总是正的(在x轴之上)并递增(从左向右看)。它永不触及x轴,尽管它可以无限程度地靠近x轴(所以,x轴是这个图像的水平渐近线。它的反函数是自然对数ln(x),它定义在所有正数x上。
函数图像:
(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。
参考资料:百度百科——指数函数
2024-10-13 广告
①如果a=0,那么指数x≠0的时候,函数值等于1,x=0的时候,函数式无意义。
②如果a<0,那么a的x次方这个幂将不连续,且出现无法确定是否有意义的不定点。因为负数不能开偶数次方,所以当x是最简分数的时候,分母为偶数的指数将使得a的x次方无意义。
所以只能研究a大于0的情况下的指数函数。
扩展资料
指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。
注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
(1) 指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2) 指数函数的值域为(0, +∞)。
(3) 函数图形都是上凹的。
(4) a>1时,则指数函数单调递增;若0<a<1,则为单调递减的(图2)。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。
(7) 函数总是通过(0,1)这点,(若 ,则函数定过点(0,1+b))
(8) 指数函数无界。
(9)指数函数是非奇非偶函数
(10)指数函数具有反函数,其反函数是对数函数,它是一个多值函数。
参考资料:百度百科-指数函数
这是规定,
如果a=0,那么指数x≠0的时候,函数值等于1,x=0的时候,函数式无意义。比较简单,无需放到指数函数中研究。
如果a<0,那么a的x次方这个幂将不连续,且出现无法确定是否有意义的不定点。
因为负数不能开偶数次方,所以当x是最简分数的时候,分母为偶数的指数将使得a的x次方无意义。
此外因为无理数不能化为分数形式,正数的幂次方是用极限的方式确定指数为无理数的幂,但是a<0时,图像不连续,无法用极限来确定指数为无理数时的幂是多少,甚至难以确定是有意义还是无意义。
所以只能研究a大于0的情况下的指数函数。
扩展资料:
指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数 。
当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候,y等于1。在x处的切线的斜率等于此处y的值乘上lna。
如果a=0,那么指数x≠0的时候,函数值等于1,x=0的时候,函数式无意义。比较简单,无需放到指数函数中研究。
如果a<0,那么a的x次方这个幂将不连续,且出现无法确定是否有意义的不定点。
因为负数不能开偶数次方,所以当x是最简分数的时候,分母为偶数的指数将使得a的x次方无意义。此外因为无理数不能化为分数形式,正数的幂次方是用极限的方式确定指数为无理数的幂,但是a<0时,图像不连续,无法用极限来确定指数为无理数时的幂是多少,甚至难以确定是有意义还是无意义。
所以只能研究a大于0的情况下的指数函数。
这是规定,
如果a=0,那么指数x≠0的时候,函数值等于1,x=0的时候,函数式无意义。比较简单,无需放到指数函数中研究。
如果a<0,那么a的x次方这个幂将不连续,且出现无法确定是否有意义的不定点。
因为负数不能开偶数次方,所以当x是最简分数的时候,分母为偶数的指数将使得a的x次方无意义。此外因为无理数不能化为分数形式,正数的幂次方是用极限的方式确定指数为无理数的幂,但是a<0时,图像不连续,无法用极限来确定指数为无理数时的幂是多少,甚至难以确定是有意义还是无意义。
所以只能研究a大于0的情况下的指数函数。
广告 您可能关注的内容 |