求解齐次微分方程:(x^2+y^2)dx=xydy

 我来答
户如乐9318
2022-05-23 · TA获得超过6667个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:140万
展开全部
方程变形为dy/dx=x/y+y/x.令u=y/x,则y=xu,dy/dx=u++x*du/dx,所以原方程化为
u+x*du/dx=u+1/u.所以udu=dx/x.两边积分1/2*u^2=lnx+lnC.代入u=y/x得通解y^2=2x^2ln(Cx).
另外x≡0也是微分方程的解.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式