多元函数微分学中,用拉格朗日乘数法求条件极值,需要考虑λ=0吗,如何跳过λ解出相应的未知量?
2个回答
展开全部
需要考虑λ=0,从前几个式子中找出x,y,z之间的关系,然后带入到φ ( x,y,z ) = 0 \varphi (x,y,z)=0φ(x,y,z)=0 中解出来。先求出λ\lambdaλ的值,化简式子。目标函数的极值可以用λ \lambdaλ表示,然后只用求 λ \lambdaλ 即可。
多元函数
设D为一个非空的n 元有序数组的集合, f为某一确定的对应规则。若对于每一个有序数组 ( x1,x2,…,xn)∈D,通过对应规则f,都有唯一确定的实数y与之对应,则称对应规则f为定义在D上的n元函数。
记为y=f(x1,x2,…,xn) 其中 ( x1,x2,…,xn)∈D。 变量x1,x2,…,xn称为自变量,y称为因变量。
当n=1时,为一元函数,记为y=f(x),x∈D,当n=2时,为二元函数,记为z=f(x,y),(x,y)∈D。二元及以上的函数统称为多元函数。
展开全部
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询