sin2x×cos2x的不定积分如何求?

 我来答
帐号已注销
2021-12-13 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:160万
展开全部

sin2x×cos2x的不定积分求法:

cos2x的不定积分是(1/2)sin2x+C。

∫cos2xdx

=(1/2)∫cos2xd2x

=(1/2)sin2x+C

∫sin2xdx

=1/2∫sin2xd2x

=-cosx/2+C

∫cos2xdx

=1/2∫cos2xd2x

=sinx/2+C

解释

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式