非齐次线性方程组的特解是不是唯一的

线性代数请和通解区分清楚... 线性代数 请和通解区分清楚 展开
 我来答
梦色十年
高粉答主

2019-05-31 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:2967
采纳率:100%
帮助的人:95.9万
展开全部

非齐次线性方程组的特解不是唯一的,只是通解的一个代表。

非齐次线性方程组:常数项不全为零的线性方程组。

非齐次线性方程组有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即:rank(A)=rank(A, b).否则直接判为无解。有唯一解的充要条件是rank(A)=n;有无穷多解的充要条件是rank(A)。

扩展资料:

非齐次线性方程组Ax=B有解的充分必要条件是:

系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。

非齐次线性方程组有唯一解的充要条件是rank(A)=n。

非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)

非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。

雪定饿了冇
推荐于2017-12-16 · TA获得超过172个赞
知道小有建树答主
回答量:135
采纳率:0%
帮助的人:106万
展开全部
非齐次方程组不一定有解。特解,全名叫特殊解,不是唯一的,是通解的一个代表。请采纳!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2015-10-02
展开全部
前提,非齐次方程组有解

(1)对应的齐次方程组仅有零解时,
非齐次方程组的特解仅有一个。
(2)对应的齐次方程组有非零解时,
非齐次方程组的特解有无数个。
追答
sb,gp一样的答案
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
教育小百科达人
2019-06-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

非齐次方程组不一定有解。特解,全名叫特殊解,不是唯一的,是通解的一个代表。

非齐次线性方程组Ax=b的求解步骤:

1、对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。

2、若R(A)=R(B),则进一步将B化为行最简形。

3、设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,即可写出含n-r个参数的通解。

扩展资料:

系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。

非齐次线性方程组有唯一解的充要条件是rank(A)=n。

非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)

对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。

参考资料来源:百度百科--非齐次线性方程组

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式