已知三边,求三角形外心到顶点的距离? 公式是什么?
1个回答
展开全部
外接圆半径:
公式:
a/sinA=b/sinB=c/sinC=2R (R就是外接圆半径)
本题可以这样:
①.先利用余弦定理:a^2=b^2+c^2-2bc·cosA
求出:cosA=(b^2+c^2-a^2)/2bc
在利用公式:sinA^2+cosA^2=1确定
sinA=根号(1-cosA^2)
=根号[(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)]/(2bc)
然后代入 a/sinA=2R求出R.
R=2abc/根号[(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)]
公式:
a/sinA=b/sinB=c/sinC=2R (R就是外接圆半径)
本题可以这样:
①.先利用余弦定理:a^2=b^2+c^2-2bc·cosA
求出:cosA=(b^2+c^2-a^2)/2bc
在利用公式:sinA^2+cosA^2=1确定
sinA=根号(1-cosA^2)
=根号[(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)]/(2bc)
然后代入 a/sinA=2R求出R.
R=2abc/根号[(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询