网络--TCP/IP(四)TCP 与 UDP 协议简介
从本节开始,我们开始学习最重要的传输层。传输层位于OSI七层模型的第四层(从下往上)。顾名思义,传输层的作用是实现应用程序间的通信。网络层的作用是保证数据在不同数据链路上传输的可达性,至于如何传输则是由传输层负责。
常见的传输层协议主要有 TCP和UDP 协议。
UDP协议最大的特点就是简单,UDP首部如图:
和UDP首部相比,TCP首部要复杂的多。解析这个首部的时间也会相应的增加,这也是TCP连接的效率低于UDP的原因之一。
TCP是面向有连接的协议,连接在每次通信前被建立,通信结束后被关闭。了解连接建立和关闭的过程通常是考察的重点。连接的建立和关闭可以用一张图来表示:
通常情况下我们认为客户端首先发起连接请求。
1.发送端发送一个SYN=1,ACK=0标志的数据包给接收端,请求进行连接,这是第一次握手;
2.接收端收到请求并且允许连接的话,就会发送一个SYN=1,ACK=1标志的数据包给发送端,告诉它,可以通讯了,并且让发送端发送一个确认数据包,这是第二次握手;
3.最后,发送端发送一个SYN=0,ACK=1的数据包给接收端,告诉它连接已被确认,这就是第三次握手。之后,一个TCP连接建立,开始通讯。
*SYN:同步标志
同步序列编号(Synchronize Sequence Numbers)栏有效。该标志仅在三次握手建立TCP连接时有效。它提示TCP连接的服务端检查序列编号,该序列编号为TCP连接初始端(一般是客户端)的初始序列编号。在这里,可以把TCP序列编号看作是一个范围从0到4,294,967,295的32位计数器。通过TCP连接交换的数据中每一个字节都经过序列编号。在TCP报头中的序列编号栏包括了TCP分段中第一个字节的序列编号。
*ACK:确认标志
确认编号(Acknowledgement Number)栏有效。大多数情况下该标志位是置位的。TCP报头内的确认编号栏内包含的确认编号(w+1,Figure-1)为下一个预期的序列编号,同时提示远端系统已经成功接收所有数据。
*RST:复位标志
复位标志有效。用于复位相应的TCP连接。
*URG:紧急标志
紧急(The urgent pointer) 标志有效。紧急标志置位,
*PSH:推标志
该标志置位时,接收端不将该数据进行队列处理,而是尽可能快将数据转由应用处理。在处理 telnet 或 rlogin 等交互模式的连接时,该标志总是置位的。
*FIN:结束标志
带有该标志置位的数据包用来结束一个TCP回话,但对应端口仍处于开放状态,准备接收后续数据
根据一般思路,我们认为第三次是多余的,TCP协议为什么还要增加第三次的握手呢?
这是因为在网络请求的时候,我们应该时刻记住“网络是不安全的,数据包是可能丢失的”。假设没有第三次确认,客户端向服务端发送了SYN包,请求建立连接。由于网络原因,服务器没有及时收到这个包,于是客户端重新发送了SYN包。正常建立了连接。此时超时的那个确认包到达了服务端,如果是两次握手此连接就建立了,服务端就建立了一个空连接,白白浪费资源。如果是三次,客户端判断这个确认包是无效的,就丢弃了。
三次握手实际其实解决了第二步丢包问题。那么第三步的ACK包丢失了,TCP协议是如何处理的呢?
按照TCP协议处理丢包问题的一般方法,服务器会重新向客户端发送确认包,知道ACK确认为止。但实际上这种做法有可能遭到SYN泛洪攻击。所谓的泛洪攻击,是指发送方伪造多个IP地址,模拟三次握手的过程。当服务器返回ACK后,攻击方故意不确认,从而使服务器不断重发ACK。由于服务器长时间处于半连接状态,最后消耗过多的CUP和内存资源导致死机。
所以服务端采用的是这种方法,发送RST数据包,进入close状态,这个RST数据包中的TCP首部中的控制位中的RST位被置为1。这表示连接信息全部被初始化,原有的TCP通信不能继续。客户端如果还想建立TCP连接,需要从第一步握手重新开始。
(1)客户端A发送一个FIN,用来关闭客户A到服务器B的数据传送(报文段4)。
(2)服务器B收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。
(3)服务器B关闭与客户端A的连接,发送一个FIN给客户端A(报文段6)。
(4)客户端A发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)。
2023-07-25 广告