设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则函数f(x)有下
A.有极大值f(2)和极小值f(1)B.有极大值f(-2)和极小值f(1)C.有极大值f(2)和极小值f(-2)D.f(x)有极大值f(-2)和极小值f(2)结合图象可得...
A.有极大值f(2)和极小值f(1)
B.有极大值f(-2)和极小值f(1)
C.有极大值f(2)和极小值f(-2)
D.f(x)有极大值f(-2)和极小值f(2)
结合图象可得f′(-2)=0,f′(2)=0,根据图象判断-2,2左右两侧导数的符号即可得到正确答案.
解答:解:由y=(1-x)f′(x)的图象知:f′(-2)=0,f′(2)=0,且当x<-2时,f′(x)>【(为什么??)】,当-2<x<1时,f′(x)<0【(为什么??)】,故f(x)在x=-2处取得极大值f(-2);当1<x<2时,f′(x)<0【(为什么??)】,当x>2时,f′(x)>0【(为什么??)】,故f(x)在x=2处取得极小值f(2),故选D. 展开
B.有极大值f(-2)和极小值f(1)
C.有极大值f(2)和极小值f(-2)
D.f(x)有极大值f(-2)和极小值f(2)
结合图象可得f′(-2)=0,f′(2)=0,根据图象判断-2,2左右两侧导数的符号即可得到正确答案.
解答:解:由y=(1-x)f′(x)的图象知:f′(-2)=0,f′(2)=0,且当x<-2时,f′(x)>【(为什么??)】,当-2<x<1时,f′(x)<0【(为什么??)】,故f(x)在x=-2处取得极大值f(-2);当1<x<2时,f′(x)<0【(为什么??)】,当x>2时,f′(x)>0【(为什么??)】,故f(x)在x=2处取得极小值f(2),故选D. 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询