可对角化矩阵的秩等于什么?

 我来答
教育小百科达人
2023-01-12 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:475万
展开全部

因为A可对角化,所以(E-A)x=0就有两个线性无关解,即E-A的秩是1。

详解:

λE-A的零度就是λ的几何重数,如果A可对角化则几何重数等于代数重数。

问题里"λE-A的秩等于1"中的“1”是二重特征值。又因可对角化的矩阵的秩等于其非零特征值的个数。

推导过程:

A可对角化时,存在可逆矩阵P使得 P^-1AP=diag(a1,..,an)

则 R(A) = R(P^-1AP) = Rdiag(a1,...,an) = a1,...,an中非零元素的个数。

而A的特征值即 a1,...,an

所以 R(A) 等于A的非零特征值的个数。

综上所述:(E-A)x=0就有两个线性无关解,即E-A的秩是1。

扩展资料:

可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,并通过简单的提升对角元素到同样的幂来把一个矩阵提升为它的幂。

对于一个矩阵来说,不一定存在将其对角化的矩阵,但是任意一个n×n矩阵如果存在n个线性不相关的特征向量,则该矩阵可被对角化。

一个主对角线之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值。在特征值和特征向量方面,矩阵与线性变换的理论是平行的,所得的结果对线性变换也成立。

若n阶矩阵A有n个不同的特征值,则A必能相似于对角矩阵。

说明:当A的特征方程有重根时,就不一定有n个线性无关的特征向量,从而未必能对角化。

参考资料来源:百度百科--可对角化矩阵

sjh5551
高粉答主

2023-01-14 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8131万
展开全部
可对角化矩阵的秩等于对角化后非零对角元个数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式