分解因式x3+y3+z3-3xyz
1个回答
展开全部
x^3+y^3+z^3-3xyz
=[( x+y)^3-3x^2y-3xy^2]+z^3-3xyz
=[(x+y)^3+z^3]-(3x^2y+3xy^2+3xyz)
=(x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)
=(x+y+z)(x^2+y^2+2xy-xz-yz+z^2)-3xy(x+y+z)
=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)
=[( x+y)^3-3x^2y-3xy^2]+z^3-3xyz
=[(x+y)^3+z^3]-(3x^2y+3xy^2+3xyz)
=(x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)
=(x+y+z)(x^2+y^2+2xy-xz-yz+z^2)-3xy(x+y+z)
=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询