什么是函数的导数?
1个回答
展开全部
具体回答如下:
令:f(x)=√(x^2+1)
则:f(x)=(x^2+1)^(1/2)
因此:f'(x)=(1/2)(x^2+1)^(-1/2)·(x^2+1)'
=(1/2)(x^2+1)^(-1/2)·2x
=x/√(x^2+1)
导数的性质:
导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询