已知:a,b,c∈正R,且a+b+c=1,求证:√(3a+1)+√(3b+1)+√(3c+1)≤3√2

370116
高赞答主

2008-06-08 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.2亿
展开全部
√2(3a+1)<=(2+3a+1)/2
√2(3a+1)+√2(3b+1)+√2(3c+1)
<=(2+3a+1)/2+(2+3a+1)/2+(2+3a+1)/2
=9/2+3/2(a+b+c)=6
√(3a+1)+√(3b+1)+√(3c+1)<=3√2
当且仅当a=b=c=1/3时取得
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式