求积分 ∫ (1+lnt)t lnt dt
1个回答
展开全部
注意:(tlnt)' = 1 + lnt
所以∫ (1 + lnt)·tlnt dt
= ∫ tlnt d(tlnt)
= (1/2)(tlnt)² + C
或分部积分法:
∫ (1 + lnt)·tlnt dt
= ∫ tlnt dt + ∫ tln²t dt
= ∫ tlnt dt + ∫ ln²t d(t²/2)
= ∫ tlnt dt + (1/2)t²ln²t - (1/2)∫ t² d(ln²t)
= ∫ tlnt dt + (1/2)t²ln²t - (1/2)∫ t²·2lnt * 1/t dt
= ∫ tlnt dt + (1/2)(tlnt)² - ∫ tlnt dt
= (1/2)(tlnt)² + C
所以∫ (1 + lnt)·tlnt dt
= ∫ tlnt d(tlnt)
= (1/2)(tlnt)² + C
或分部积分法:
∫ (1 + lnt)·tlnt dt
= ∫ tlnt dt + ∫ tln²t dt
= ∫ tlnt dt + ∫ ln²t d(t²/2)
= ∫ tlnt dt + (1/2)t²ln²t - (1/2)∫ t² d(ln²t)
= ∫ tlnt dt + (1/2)t²ln²t - (1/2)∫ t²·2lnt * 1/t dt
= ∫ tlnt dt + (1/2)(tlnt)² - ∫ tlnt dt
= (1/2)(tlnt)² + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询