求积分 ∫ (1+lnt)t lnt dt

 我来答
清宁时光17
2022-11-11 · TA获得超过1.4万个赞
知道大有可为答主
回答量:7244
采纳率:100%
帮助的人:42.7万
展开全部
注意:(tlnt)' = 1 + lnt
所以∫ (1 + lnt)·tlnt dt
= ∫ tlnt d(tlnt)
= (1/2)(tlnt)² + C
或分部积分法:
∫ (1 + lnt)·tlnt dt
= ∫ tlnt dt + ∫ tln²t dt
= ∫ tlnt dt + ∫ ln²t d(t²/2)
= ∫ tlnt dt + (1/2)t²ln²t - (1/2)∫ t² d(ln²t)
= ∫ tlnt dt + (1/2)t²ln²t - (1/2)∫ t²·2lnt * 1/t dt
= ∫ tlnt dt + (1/2)(tlnt)² - ∫ tlnt dt
= (1/2)(tlnt)² + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式