如何证明函数f(x)不可导?

 我来答
社无小事
高能答主

2023-01-08 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20416

向TA提问 私信TA
展开全部

连续不可导的三种情况如下:

1、函数在该点不连续,且该点是函数的第二类间断点。如y=tan(x),在x=π/2处不可导。

2、函数在该点连续,但在该点的左右导数不相等。如Y=|X|,在x=0处连续,在x处的左导数为-1,右导数为1,不相等(可导函数必须光滑),函数在x=0不可导。

3、对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。

函数可导的条件:

如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

百度网友69b8c3a8b
2023-01-10 · TA获得超过201个赞
知道小有建树答主
回答量:3179
采纳率:89%
帮助的人:198万
展开全部
如何证明函数f(x)不可导?
要证明函数f(x)不可导,需要证明函数f(x)的导数存在某个点处不可计算。这可以通过证明在某个点处函数f(x)的切线无法存在来实现,因此函数f(x)不可导。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式