已知弧长怎么求半径
1个回答
展开全部
问题一:就知道一个弧长,怎么求半径 10分 只给出弧长(用l表示)是求不出半径的,在知道弧长的前提下,还有知道一个条件,才可以求出半径:
若另一个条件为圆心角n,则半径=l/n;
若知道扇形的面积s,则半径=2s/l。
问题二:已知弧长弧高求半径 10分 郭敦回答:
已知弓形的高和长(弦长)求弓形的圆弧半径角度和弧长较易,而已知弓形的高和弧长求弓形的圆弧半径角度和弓长(弦长)则较难,
1,若已知弓形的高h和长(弦长)AB求弓形的圆弧半径R角度θ和弧长l
按勾股定理有下式,
(R-h)2+(AB/2)2=R2,
经变换得,R=AB2/8h+h/2
sin(θ/2)=(AB/2)/R,按反三角函数得到θ/2,(用科学计算器计算)和θ,
弧长l=2Rπ×θ/360
例,h=15,AB=150,则R=AB2/8h+h/2=187.5+7.5=195
sin(θ/2)=(AB/2)/R=75/195=5/13,θ/2=22.6200°,θ=45 .24°,
弧长l=2Rπ×θ/360=153.97
2若已知弓形的高h和弧长l0求弓形的圆弧半径R角度θ和弓形的长(弦长)AB
这的确较难,可用尝试―逐步逼近法求解。
你是木工给你一种实用的求解方法――
作CD⊥MN,垂足为K,并使CK=h,在C处订一钉子
用竹片或其它有弹性的物质按弧长l做一弓形,弓形的中点套在C处,两端定在MN上的两点A、B,且使AK=BK,得AB的长,连AC、BC,应有AC=BC,作AC的中垂线和BC的中垂线与CD,三线交于一点O,则
OC=半径R,
按(R-h)2+(AB/2)2=R2,初步检验
按(1)给出的方法,求得弧长l=2Rπ×θ/360与所给弧长l0进行对比若无误差,则为所求结果;若为正误差=l-l0>0,则适当减小R与AB的值;若为负误差=l-l0<0,则适当加大R与AB的值,重新计算做到基本上无误差,即得所求结果。
在给出的实例中,高h=15,弧长l0=200,
设AB=195,则R=AB2/8h+h/2=324.375,
sin(θ/2)=(AB/2)/R=52/173,θ/2=17 .4923°,θ=34 .985°,
弧长l=2Rπ×θ/360=198.06,误差=198.06-200=-1.94;
设AB=196.0,则R=AB2/8h+h/2=327.6333,
sin(θ/2)=(AB/2)/R=0 .299115,θ/2=17 .40446°,θ=34 .8089°
弧长l=2Rπ×θ/360=199.05,误差=199.05-200=-0.95;
设AB=197,则R=AB2/8h+h/2=330.9083,
sin(θ/2)=(AB/2)/R=0.2976655,θ/2=17 .3174°,θ=34 .635°
弧长l=2Rπ×θ/360=200.0,误差=200.0-200=0.0
∴半径R=330.9083,弓形的长(弦长)AB=197,弓形的中心角θ=34 .635°。...>>
问题三:已知弧长和圆心角,怎么求半径 L=n兀r/180
r=180L/n兀
问题四:已知弧长和弧两点之间的距离,怎么求半径 题目不正确
问题五:已知弧长弧高求半径 这个需要用勾股定理、垂径定理、和三角函数。
设半径为r,因为半圆心角=l/(2r)
∴r平方=(r-弧高)平方+(rsina/2)平方
然后解得r。
如果你觉得我的回答比较满意,希望给个采纳鼓励我!不满意可以继续追问。
若另一个条件为圆心角n,则半径=l/n;
若知道扇形的面积s,则半径=2s/l。
问题二:已知弧长弧高求半径 10分 郭敦回答:
已知弓形的高和长(弦长)求弓形的圆弧半径角度和弧长较易,而已知弓形的高和弧长求弓形的圆弧半径角度和弓长(弦长)则较难,
1,若已知弓形的高h和长(弦长)AB求弓形的圆弧半径R角度θ和弧长l
按勾股定理有下式,
(R-h)2+(AB/2)2=R2,
经变换得,R=AB2/8h+h/2
sin(θ/2)=(AB/2)/R,按反三角函数得到θ/2,(用科学计算器计算)和θ,
弧长l=2Rπ×θ/360
例,h=15,AB=150,则R=AB2/8h+h/2=187.5+7.5=195
sin(θ/2)=(AB/2)/R=75/195=5/13,θ/2=22.6200°,θ=45 .24°,
弧长l=2Rπ×θ/360=153.97
2若已知弓形的高h和弧长l0求弓形的圆弧半径R角度θ和弓形的长(弦长)AB
这的确较难,可用尝试―逐步逼近法求解。
你是木工给你一种实用的求解方法――
作CD⊥MN,垂足为K,并使CK=h,在C处订一钉子
用竹片或其它有弹性的物质按弧长l做一弓形,弓形的中点套在C处,两端定在MN上的两点A、B,且使AK=BK,得AB的长,连AC、BC,应有AC=BC,作AC的中垂线和BC的中垂线与CD,三线交于一点O,则
OC=半径R,
按(R-h)2+(AB/2)2=R2,初步检验
按(1)给出的方法,求得弧长l=2Rπ×θ/360与所给弧长l0进行对比若无误差,则为所求结果;若为正误差=l-l0>0,则适当减小R与AB的值;若为负误差=l-l0<0,则适当加大R与AB的值,重新计算做到基本上无误差,即得所求结果。
在给出的实例中,高h=15,弧长l0=200,
设AB=195,则R=AB2/8h+h/2=324.375,
sin(θ/2)=(AB/2)/R=52/173,θ/2=17 .4923°,θ=34 .985°,
弧长l=2Rπ×θ/360=198.06,误差=198.06-200=-1.94;
设AB=196.0,则R=AB2/8h+h/2=327.6333,
sin(θ/2)=(AB/2)/R=0 .299115,θ/2=17 .40446°,θ=34 .8089°
弧长l=2Rπ×θ/360=199.05,误差=199.05-200=-0.95;
设AB=197,则R=AB2/8h+h/2=330.9083,
sin(θ/2)=(AB/2)/R=0.2976655,θ/2=17 .3174°,θ=34 .635°
弧长l=2Rπ×θ/360=200.0,误差=200.0-200=0.0
∴半径R=330.9083,弓形的长(弦长)AB=197,弓形的中心角θ=34 .635°。...>>
问题三:已知弧长和圆心角,怎么求半径 L=n兀r/180
r=180L/n兀
问题四:已知弧长和弧两点之间的距离,怎么求半径 题目不正确
问题五:已知弧长弧高求半径 这个需要用勾股定理、垂径定理、和三角函数。
设半径为r,因为半圆心角=l/(2r)
∴r平方=(r-弧高)平方+(rsina/2)平方
然后解得r。
如果你觉得我的回答比较满意,希望给个采纳鼓励我!不满意可以继续追问。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询