e的负x次方的导数是多少?
1个回答
展开全部
e的负x次方的导数为 -e^(-x)。
计算方法:
{ e^(-x) }′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)
本题中可以把-x看作u,即:
{ e^u }′ = e^u * u′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)
扩展资料:
1、(logaX)'=1/(Xlna) (a>0,且a≠1);
2、(tanX)'=1/(cosX)2=(secX)2
3、(cotX)'=-1/(sinX)2=-(cscX)2
4、(secX)'=tanX secX;
5、(cscX)'=-cotX cscX;
不是所有的函数都可以求导;可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询