已知a1=9,点(an,a(n+1)在函数f(x)=x^2+2*x的图像上
已知a1=9,点(an,a(n+1)在函数f(x)=x^2+2*x的图像上,其中n€N*,设bn=lg(1+an),1.证明数列{bn}是等比数列;2.设cn...
已知a1=9,点(an,a(n+1)在函数f(x)=x^2+2*x的图像上,其中n€N*,设bn=lg(1+an) ,1.证明数列{bn}是等比数列;2.设cn=nbn,求数列{cn}的前n项和sn;
展开
2个回答
展开全部
解:
(an,a(n+1)在函数上
an²+2an=a(n+1)
∴(an+1)²=a(n+1)+1
两边取对数:
2lg(an+1)=lg(a(n+1)+1)
bn=lg(1+an)
b(n+1)=lg(1+a(n+1))
∴
b(n+1)/bn=2
又b1=lg(1+a1)=lg(1+9)=1
∴bn是b1=1为首项,公比为2的等比数列
∴bn=2^(n-1)
∴cn=n*2^(n-1)
sn=c1+c2+……+cn
=1+2*2+3*2^2+……+n*2^(n-1) (1)
2sn=2+2*2^2+3*2^3+……+n*2^n (2)
(1)-(2)得:
-sn=1+2+2^2+……+2^(n-1)-n*2^n
∴-sn=1(1-2^n)/(1-2)-n*2^n
∴sn=(n-1)*2^n+1
(an,a(n+1)在函数上
an²+2an=a(n+1)
∴(an+1)²=a(n+1)+1
两边取对数:
2lg(an+1)=lg(a(n+1)+1)
bn=lg(1+an)
b(n+1)=lg(1+a(n+1))
∴
b(n+1)/bn=2
又b1=lg(1+a1)=lg(1+9)=1
∴bn是b1=1为首项,公比为2的等比数列
∴bn=2^(n-1)
∴cn=n*2^(n-1)
sn=c1+c2+……+cn
=1+2*2+3*2^2+……+n*2^(n-1) (1)
2sn=2+2*2^2+3*2^3+……+n*2^n (2)
(1)-(2)得:
-sn=1+2+2^2+……+2^(n-1)-n*2^n
∴-sn=1(1-2^n)/(1-2)-n*2^n
∴sn=(n-1)*2^n+1
展开全部
(1)
(an,a(n+1)在函数f(x)=x^2+2*x的图像上
a(n+1) =(an)^2+2an
a(n+1) +1 = (an+1)^2
lg(a(n+1)+1) = 2lg(an+1)
lg(a(n+1)+1) /lg(an+1)= 2
=>数列{bn}是等比数列
(2)
b(n+1)) /bn= 2
bn /b1= 2^(n-1)
bn =2^(n-1)
cn =nbn
=n.2^(n-1)
consider
1+x+x^2+..+x^n = (x^(n+1)-1)/(x-1)
1+2x+3x^2+...+nx^(n-1)=[(x^(n+1)-1)/(x-1)]'
=[nx^(n+1)-(n+1)x^n+1]/(x-1)^2
put x=2
summation(i:1->n) i.2^(i-1)
= n.2^(n+1)-(n+1)2^n+1
=(1+(n-1).2^n )
Tn =c1+c2+..+cn
= {summation(i:1->n) i.2^(i-1) }
=1+(n-1).2^n
(an,a(n+1)在函数f(x)=x^2+2*x的图像上
a(n+1) =(an)^2+2an
a(n+1) +1 = (an+1)^2
lg(a(n+1)+1) = 2lg(an+1)
lg(a(n+1)+1) /lg(an+1)= 2
=>数列{bn}是等比数列
(2)
b(n+1)) /bn= 2
bn /b1= 2^(n-1)
bn =2^(n-1)
cn =nbn
=n.2^(n-1)
consider
1+x+x^2+..+x^n = (x^(n+1)-1)/(x-1)
1+2x+3x^2+...+nx^(n-1)=[(x^(n+1)-1)/(x-1)]'
=[nx^(n+1)-(n+1)x^n+1]/(x-1)^2
put x=2
summation(i:1->n) i.2^(i-1)
= n.2^(n+1)-(n+1)2^n+1
=(1+(n-1).2^n )
Tn =c1+c2+..+cn
= {summation(i:1->n) i.2^(i-1) }
=1+(n-1).2^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询