学数学有什么技巧

 我来答
抛下思念17
2022-10-08 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6213
采纳率:99%
帮助的人:34.1万
展开全部

学数学有什么技巧

  学数学有什么技巧,对于数学这门学科,在课前预习是非常有必要的,集合思想就是运用集合的概念、逻辑语言,因此要想学好数学确实要费一番心思,以下分享学数学有什么技巧。

  学数学有什么技巧1

  数学其实不简单,要想学好数学确实要费一番心思,但是数学真学进去了会感觉很有意思,根本没那么困扰大家。数学知识点很多很杂,只有踏踏实实一步一个脚印才能把数学学好。另外,学好数学不是一朝一夕的事,大家要有持久的耐力,最好有动力,做好打持久战的准备。

  在数学学习上,首先要告诉大家,不是教出来的,是悟出来的,是自学出来的。不是看会的,是算会的。具体来说,数学光靠老师上课讲的那些东西是学不会的,也就是所谓的看花容易绣花难,只有经过自己的亲身实践才能知道自己到底会不会,摆脱其他人的思路,自己做出来的东西才不容易忘记。

  在学习数学时,最简单有效的方法就是多做题,通过做题来巩固所学的知识,把公式记得更扎实牢固一些。同时,还有一个工序就是课前预习,大家也不要小瞧了这个过程,因为预习也是一个自学的过程,这最能锻炼同学们的思维能力以及独立解题能力,这一步做好了数学成绩能有一个很大提升和进步。

   数学学习可以速成吗

  数学虽然说是从小学到大的科目,但是个别知识点还是会出现断层,比如几何是初中才开始学的,所以小学数学不好完全没有影响,而有的知识点是高中新学的,和初中以前也完全没有交叉,所以以前数学不好也不会影响现在学新知识。

  至于数学速成这个问题,虽然做题时有很多解题技巧,比如选择题可以在短时间内挑出答案,但是都是针对固定题型的,而一些大题总结出来的规律也都比较死板,如果不理解其内涵很容易出错。因此,数学是很难速成的,要想学好数学首先还得理解公式,在理解的基础上去总结模板才能快速提高数学成绩。

   高考数学解题技巧和快速提分方法

   调整大脑思绪

  我们在考试前要排除杂念,使自己尽快的进入考试的状态,在脑中回忆数学知识点,进行针对性的自我暗示,减轻压力,稳定情绪,以平和的心态应对考试。

   确保运算准确

  高考的数学题题量比较大,所以时间比较紧张,基本不会给我们逐题检查的时间。所以运算准确十分重要,最好是一次成功。我们要知道,解题的速度是建立在准确度上的,而且解题的质量也影响着我们接下来的解答。最好是在快的基础上稳扎稳打。不要盲目的`追求速度而忽略了准确度。

   面对难题,讲究方法

  在面对一道我们不会的题的时候,我们可以试着将这道题划分成一个个的子问题,先解决其中的一部分,说不准在做到哪个步骤的时候就会激发你的灵感,如果在某一道题的环节上耽误的时间过多,我们可以换一个途径,跳过这个步骤,从其他步骤开始做起。

   高考数学题型及解题技巧

   选择题

  选择题是数学考试中常见的题型,我们想要提高选择题的正确率,就要求我们在平时练习的时候要注意归纳题干中的信息,排除干扰选项,找到正确的答案。

   填空题

  一般高考数学的填空题都在选择题之后,难度相比其他题型来说也会低不少,而且分值也不是非常高。数学考试的填空题主要考察我们最基础的能力。一般填空题的运算量都不算很大,只要我们熟练掌握各个知识点,都可以顺利的解答。

   身体技巧

  正确的审题是解答问题的关键,审题的过程包括明确条件,分析条件,确定解题思路。分析条件是指我们在数学考试的时候要找出题目中已知的条件。分析条件就是根据已知条件来找出隐含的条件,从掌握的信息来进行推导,以达到解题的目的。确定思路就是分析已知条件和最终解答之间的联系,需要用到哪些定理,运用哪些步骤,最后完成解答。

  学数学有什么技巧2

   1、对应思想方法

  对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

   2、假设思想方法

  假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

   3、比较思想方法

  比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

   4、符号化思想方法

  用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

   5、类比思想方法

  类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

   6、转化思想方法

  转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

   7、分类思想方法

  分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

  又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式