二重积分求球表面
1个回答
展开全部
令P=xy2,Q=yz2,R=zx2
则αP/αx=y2,αQ/αy=z2,αR/αz=x2
∴根据高斯定理,有
∫∫xy2dydz+yz2dzdx+zx2dxdy+∫∫xy2dydz+yz2dzdx+zx2dxdy
=∫∫∫(αP/αx+αQ/αy+αR/αz)dxdydz
=∫∫∫(x2+y2+z2)dxdydz (D表示上半球面,S表示xy平面圆:x2+y2=1,V表示D+S)
=∫dθ∫sinφdφ∫r2*r2dr (做球面坐标变换)
=(2π-0)(1-0)(1/5-0)
=2π/5
∵∫∫xy2dydz+yz2dzdx+zx2dxdy=0 (∵z=0,∴dz=0)
∴∫∫xy2dydz+yz2dzdx+zx2dxdy=2π/5-∫∫xy2dydz+yz2dzdx+zx2dxdy
=2π/5-0
=2π/5.
则αP/αx=y2,αQ/αy=z2,αR/αz=x2
∴根据高斯定理,有
∫∫xy2dydz+yz2dzdx+zx2dxdy+∫∫xy2dydz+yz2dzdx+zx2dxdy
=∫∫∫(αP/αx+αQ/αy+αR/αz)dxdydz
=∫∫∫(x2+y2+z2)dxdydz (D表示上半球面,S表示xy平面圆:x2+y2=1,V表示D+S)
=∫dθ∫sinφdφ∫r2*r2dr (做球面坐标变换)
=(2π-0)(1-0)(1/5-0)
=2π/5
∵∫∫xy2dydz+yz2dzdx+zx2dxdy=0 (∵z=0,∴dz=0)
∴∫∫xy2dydz+yz2dzdx+zx2dxdy=2π/5-∫∫xy2dydz+yz2dzdx+zx2dxdy
=2π/5-0
=2π/5.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询