△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上中线,CF⊥AD于F,交AB于E,求证∠AEC=∠DEB 5
△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上中线,CF⊥AD于F,交AB于E,求证∠AEC=∠DEB...
△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上中线,CF⊥AD于F,交AB于E,求证∠AEC=∠DEB
展开
1个回答
展开全部
本题很难,步骤特多,结论是错的。
求证:∠ADC=∠BDE。
证明:作CH⊥AB于H交AD于P,
∵在Rt△ABC中,AC=CB,∠ACB=90°,
∴∠CAB=∠CBA=45°.
∴∠HCB=90°-∠CBA=45°=∠CBA.
又∵BC中点为D,
∴CD=BD.
又∵CH⊥AB,
∴CH=AH=BH.
又∵∠PAH+∠APH=90°,∠PCF+∠CPF=90°,∠APH=∠CPF,
∴∠PAH=∠PCF.
在△APH与△CEH中
∠PAH=∠ECH,AH=CH,∠PHA=∠EHC,
∴△APH≌△CEH(ASA).
∴PH=EH,
又∵PC=CH-PH,BE=BH-HE,
∴CP=EB.
在△PDC与△EDB中
PC=EB,∠PCD=∠EBD,DC=DB,
∴△PDC≌△EDB(SAS).
∴∠ADC=∠BDE.
求证:∠ADC=∠BDE。
证明:作CH⊥AB于H交AD于P,
∵在Rt△ABC中,AC=CB,∠ACB=90°,
∴∠CAB=∠CBA=45°.
∴∠HCB=90°-∠CBA=45°=∠CBA.
又∵BC中点为D,
∴CD=BD.
又∵CH⊥AB,
∴CH=AH=BH.
又∵∠PAH+∠APH=90°,∠PCF+∠CPF=90°,∠APH=∠CPF,
∴∠PAH=∠PCF.
在△APH与△CEH中
∠PAH=∠ECH,AH=CH,∠PHA=∠EHC,
∴△APH≌△CEH(ASA).
∴PH=EH,
又∵PC=CH-PH,BE=BH-HE,
∴CP=EB.
在△PDC与△EDB中
PC=EB,∠PCD=∠EBD,DC=DB,
∴△PDC≌△EDB(SAS).
∴∠ADC=∠BDE.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询