圆面积公式是什么?
圆的面积公式是S=πr²
公式简介
公式内容为圆周率*半径的平方,用字母可以表示为:S=πr²或S=π*(d/2)²。(π表示圆周率(3.1415926……),r表示半径,d表示直径)。
公式由来
开普勒是德国天文学家、物理学家、数学家,现代实验光学奠基人。他当过数学老师,对求面积的问题非常感兴趣,曾进行过深入的研究。
他想,古代数学家用分割的方法去求圆面积,所得到的结果都是近似值。为了提高近似程度,他们不断地增加分割的次数。但是,不管分割多少次,只要是有限次,所求出来的总是圆面积的近似值。要想求出圆面积的精确值,必须分割无穷多次,把圆分成无穷多等分才行。
开普勒运用无穷分割法,大胆地把圆分割成无穷多个小扇形,并果敢地断言:无穷小的扇形面积,和它对应的无穷小的三角形面积相等。他在前人求圆面积的基础上,向前迈出了重要的一步。
1615年,他将自己创造的这种求圆面积的新方法,发表在《葡萄酒桶的立体几何》一书中。数学家们高度评价开普勒的工作,称赞这本书是人们创造求圆面积和体积新方法的灵感源泉。
2024-11-19 广告
丌=3.14。
在没有发现“圆面积是它外切正方形面积的九分之七”之前,人们一直借用近似、接近、趋近或相当于圆的外切正n边形面积公式S=πR²替代圆面积公式(因为半径R不等于弦心距r)。
由于“圆面积s等于它直径d的三分之一平方的七倍”。
为此,圆的面积公式是:s=7(d/3)²。