矩阵中的特征值和特征向量如何求出。

 我来答
小青清爱生活
高粉答主

2022-10-08 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:2672
采纳率:100%
帮助的人:65.1万
展开全部

从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。 

矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。 

通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。

扩展资料:

数值计算的原则:

在实践中,大型矩阵的特征值无法通过特征多项式计算,计算该多项式本身相当费资源,而精确的“符号式”的根对于高次的多项式来说很难计算和表达:阿贝尔-鲁费尼定理显示高次(5次或更高)多项式的根无法用n次方根来简单表达。

对于估算多项式的根的有效算法是有的,但特征值的小误差可以导致特征向量的巨大误差。求特征多项式的零点,即特征值的一般算法,是迭代法。最简单的方法是幂法:取一个随机向量v,然后计算一系列单位向量。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式