2个回答
展开全部
要弄清这个问题你得先弄明白函数列收敛和函数列一致收敛。在这里我就不复制定义了。
首先关于函数列收敛:对于一列函数列 {fn(x)},当给定一x时(也就是让x取一个定值),则函数列fn(x)},就变成了一个数列了。类如函数列 fn(x)=x^n(x的n次方),当给定x=2时,fn(x)=2^n(2的n次方),,这就是一个数列了,当这个数列{2^n}收敛,就说函数列{fn(x)}在x=2收敛;当这个数列{2^n}不收敛,就说函数列{fn(x)}在x=2发散的。
对于函数列 fn(x)=x^n(x的n次方),当x=1时收敛;当x=2时发散。
弄清上面了,函数列几乎处处收敛就很容易了。
函数列几乎处处收敛是指:使得函数列不收敛的所有点组成的集合的测度(Lebesgue测度)为0。
通俗的说就是不收敛的点不多,测度为0,可以忽略。除去不收敛点,剩下的点都是使得函数列收敛,所以说函数列“几乎处处”收敛(因为测度为0)。- 一致收敛是一样的
我只是写一下意思,具体的定义还得看教材,希望对你后帮助
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询