求微分方程y'+[(2-3X^2)/x^3]y=1的通解?
展开全部
e^[∫(2-3x^2)/x^3dx]=e^(-1/x^2-3ln|x|)=e^(-1/x^2)/x^3
所以e^(-1/x^2)/x^3(y'+(2-3x^2)/x^3*y)=e^(-1/x^2)/x^3
(ye^(-1/x^2)/x^3)'=e^(-1/x^2)/x^3
两边积分:ye^(-1/x^2)/x^3=1/2∫e^(-1/x^2)d(-1/x^2)=e^(-1/x^2)/2+C
y=x^3/2+Ce^(1/x^2),5,
所以e^(-1/x^2)/x^3(y'+(2-3x^2)/x^3*y)=e^(-1/x^2)/x^3
(ye^(-1/x^2)/x^3)'=e^(-1/x^2)/x^3
两边积分:ye^(-1/x^2)/x^3=1/2∫e^(-1/x^2)d(-1/x^2)=e^(-1/x^2)/2+C
y=x^3/2+Ce^(1/x^2),5,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询