积分 1/(1+根号下 3x) dx?
1个回答
展开全部
原式=(1/3)∫{1/[1+√(3x)]}d(3x).
令√(3x)=u,则3x=u^2,∴d(3x)=2udu.
∴原式=(1/3)∫[2u/(1+u)]du
=(2/3)∫{[(u+1)-1]/(u+1)}d(u+1)
=(2/3)∫[1-1/(u+1)]d(u+1)
=(2/3)∫d(u+1)-(2/3)∫[1/(u+1)]d(u+1)
=(2/3)(u+1)-(2/3)ln|u+1|+C
=(2/3)[√(3x)+1]-(2/3)ln|√(3x)+1|+C
=(2/3)√(3x)-(2/3)ln[√(3x)+1]+C,8,
令√(3x)=u,则3x=u^2,∴d(3x)=2udu.
∴原式=(1/3)∫[2u/(1+u)]du
=(2/3)∫{[(u+1)-1]/(u+1)}d(u+1)
=(2/3)∫[1-1/(u+1)]d(u+1)
=(2/3)∫d(u+1)-(2/3)∫[1/(u+1)]d(u+1)
=(2/3)(u+1)-(2/3)ln|u+1|+C
=(2/3)[√(3x)+1]-(2/3)ln|√(3x)+1|+C
=(2/3)√(3x)-(2/3)ln[√(3x)+1]+C,8,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询