求2sinθ+√3cosθsinφ-cosθcosφ的最大值和最小值

 我来答
黑科技1718
2022-07-17 · TA获得超过5872个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:81.7万
展开全部
y=2sinθ+√3cosθsinφ-cosθcosφ
=2sinθ+2cosθ(√3sinφ/2-cosφ/2)
=2sinθ+2cosθsin(φ-30)
=2sinθ+2cosθsina
=√(4+4sin^2a)sin(θ+m)
上式中a=φ-30,m=tan^(-1)sina
所以max{y}=√(4+4sin^2a)=2√2,此处a=90+180k1 k1为整数,θ+m=90+360k2 k2为整数
或当φ=120+180k1 k1为整数,并且θ=-tan^(-1)sin(φ-30)+90+360k2 k2为整数时,max{y}=2√2
当φ=120+180k1 k1为整数,并且θ=-tan^(-1)sin(φ-30)-90+360k2 k2为整数时,min{y}=-2√2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式