错位相减法的通用公式是什么?

 我来答
知识改变命运7788
高能答主

2022-12-09 · 只要付出,就有收获,好好学习。
知识改变命运7788
采纳数:1341 获赞数:7414

向TA提问 私信TA
展开全部

错位相减法万能公式:bn=b1+(n-1)×d。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:

(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式。

(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法。

解题方法:

在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(公比为a,格式问题,在a后面的数字和n都是指数形式):

S=a+2a^2+3a^3+……+(n-2)a^(n-2)+(n-1)a^(n-1)+na^n(1)。

在(1)的左右两边同时乘上a。得到等式(2)如下:

aS=a^2+2a^3+3a^4+……+(n-2)a^(n-1)+(n-1)a^n+na^(n+1)(2)。

用(1)—(2),得到等式(3)如下:

(1-a)S=a+(2-1)a^2+(3-2)a^3+……+(n-n+1)a^n-na^(n+1)(3)。

(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。

S=a+a^2+a^3+……+a^(n-1)+a^n用这个的求和公式。

(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。

最后在等式两边同时除以(1-a),就可以得到S的通用公式了。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式