一道高等代数题目,求解。谢谢。要过程噢。有悬赏噢。

设A为数域P上的3阶方阵,X为P上3维列向量,满足A^3X+A^2X+2AX-3X=0,若向量X,AX,A^2X线性无关,则A的行列式为多少?注A^3X表明A的3次方与X... 设A为数域P上的3阶方阵,X为P上3维列向量,满足A^3X+A^2X+2AX-3X=0,若向量X,AX,A^2X线性无关,则A的行列式为多少?
注A^3X表明A的3次方与X的乘积。后面的类推,谢谢。
有悬赏噢。要过程噢。
展开
电灯剑客
科技发烧友

2013-06-27 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4741万
展开全部
取Q=[X,AX,A^2X], 那么Q可逆且AQ=QB, 或者写成Q^{-1}AQ=B, 其中
B=
0 0 3
1 0 -2
0 1 -1
所以det(A)=det(B)
det(B)硬算也行, 如果你知道有理标准型的话也可以直接从Vieta定理看出结果
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式