求出两条抛物线y=x^2和y^2=x所围成的平面图形的面积
1个回答
展开全部
约定:∫[a,b] 表示求[a,b]区间上的定积分.
解:二曲线交点是(0,0),(1,1)
所围区域面积
S=∫[0,1]((√x)-x^2)dx
=((2/3)x^(3/2)-(1/3)x^3)|[0,1]
=(2/3)-(1/3)
=1/3
希望对你有点帮助!
解:二曲线交点是(0,0),(1,1)
所围区域面积
S=∫[0,1]((√x)-x^2)dx
=((2/3)x^(3/2)-(1/3)x^3)|[0,1]
=(2/3)-(1/3)
=1/3
希望对你有点帮助!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |