如何求sinx/ cosx?
1个回答
展开全部
sinx = x -(1/6)x^3 +o(x^4)
cos(sinx)
= cos[x -(1/6)x^3 +o(x^4)]
= 1 - (1/2)[x -(1/6)x^3]^2 + (1/24)[x -(1/6)x^3]^4 +o(x^4)
= 1 - (1/2)[x^2 -(1/3)x^4 +o(x^4)]+ (1/24)[x^4+o(x^4)] +o(x^4)
=1- (1/2)x^2 + ( 1/6 +1/24) x^4 +o(x^4)
=1- (1/2)x^2 + (5/24) x^4 +o(x^4)
cos(sinx)
= cos[x -(1/6)x^3 +o(x^4)]
= 1 - (1/2)[x -(1/6)x^3]^2 + (1/24)[x -(1/6)x^3]^4 +o(x^4)
= 1 - (1/2)[x^2 -(1/3)x^4 +o(x^4)]+ (1/24)[x^4+o(x^4)] +o(x^4)
=1- (1/2)x^2 + ( 1/6 +1/24) x^4 +o(x^4)
=1- (1/2)x^2 + (5/24) x^4 +o(x^4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询