
已知方程x^2+y^2-2x-4y+m=0(1)若此方程表示圆、求m的取值范围。(2)若(1)中的圆与直线x+2y-4=0相交于M.N... 40
已知方程x^2+y^2-2x-4y+m=0(1)若此方程表示圆、求m的取值范围。(2)若(1)中的圆与直线x+2y-4=0相交于M.N两点,且OM垂直于ON(O为坐标原点...
已知方程x^2+y^2-2x-4y+m=0(1)若此方程表示圆、求m的取值范围。(2)若(1)中的圆与直线x+2y-4=0相交于M.N两点,且OM垂直于ON(O为坐标原点)求m的值。(3)在(2)的条件下.求以MN为直径的圆的标准方程…要求:有详细的解答过程
展开
2个回答
展开全部
(1)若此方程表示圆,则可以写成(x-1)^2+(y-2)^2=5-m,圆的圆心为(1,2),圆的半径不能小于等于0,因此5-m>0,m<5。
(2)圆与直线相交于两点M和N,且OM垂直于ON,设M(x1,y1),N(x2,y2),则可知OM的斜率为k1=y1/x1,ON的斜率为k2=y2/x2,相互垂直则k1k2=-1,即x1x2+y1y2=0,再由于MN是圆与直线的交点,因此x1和x2是直线方程代入圆方程后的两个根,即方程为x^2+(4-x)^2/4-2x-2(4-x)+m=5x^2/4-2x+m-4=0,由韦达定理可知x1x2=4(m-4)/5,而y=(4-x)/2,因此y1y2=(4-x1)(4-x2)/4=4-(x1+x2)+x1x2/4=4-4/5+(m-4)/5=12/5+m/5,即x1x2+y1y2=4m/5-16/5+12/5+m/5=m-4/5=0,m=4/5。
(3)m=4/5,则代入方程5x^2/4-2x+m-4=0可得25x^2-40x-64=0,解得x=(4±4√5)/5,因此对应的y=(8±2√5)/5,即可知MN两点的坐标为((4-4√5)/5,(8+2√5)/5)和((4+4√5)/5,(8-2√5)/5),MN的中点即为圆心,坐标为(4/5,8/5),MN之间的距离为√{[(4+4√5)/5-(4-4√5)/5]^2+[(8-2√5)/5-(8+2√5)/5]^2}=√[(8√5/5)^2+(4√5/5)^2]=4,因此以MN为直径的圆的半径为2,所以以MN为直径的圆的标准方程为(x-4/5)^2+(y-8/5)^2=4。
(2)圆与直线相交于两点M和N,且OM垂直于ON,设M(x1,y1),N(x2,y2),则可知OM的斜率为k1=y1/x1,ON的斜率为k2=y2/x2,相互垂直则k1k2=-1,即x1x2+y1y2=0,再由于MN是圆与直线的交点,因此x1和x2是直线方程代入圆方程后的两个根,即方程为x^2+(4-x)^2/4-2x-2(4-x)+m=5x^2/4-2x+m-4=0,由韦达定理可知x1x2=4(m-4)/5,而y=(4-x)/2,因此y1y2=(4-x1)(4-x2)/4=4-(x1+x2)+x1x2/4=4-4/5+(m-4)/5=12/5+m/5,即x1x2+y1y2=4m/5-16/5+12/5+m/5=m-4/5=0,m=4/5。
(3)m=4/5,则代入方程5x^2/4-2x+m-4=0可得25x^2-40x-64=0,解得x=(4±4√5)/5,因此对应的y=(8±2√5)/5,即可知MN两点的坐标为((4-4√5)/5,(8+2√5)/5)和((4+4√5)/5,(8-2√5)/5),MN的中点即为圆心,坐标为(4/5,8/5),MN之间的距离为√{[(4+4√5)/5-(4-4√5)/5]^2+[(8-2√5)/5-(8+2√5)/5]^2}=√[(8√5/5)^2+(4√5/5)^2]=4,因此以MN为直径的圆的半径为2,所以以MN为直径的圆的标准方程为(x-4/5)^2+(y-8/5)^2=4。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询