如何判断是否是完全平方数?

 我来答
吉家隐靖琪
2023-01-29 · TA获得超过1109个赞
知道小有建树答主
回答量:1997
采纳率:100%
帮助的人:11.2万
展开全部
假设四个整数的最小的是n
那么这四个连续整数的乘积为 n(n+1)(n+2)(n+3)
因此,我们有 n(n+1)(n+2)(n+3)+1= [ (n+1)的平方 + n ]的平方 ,
也就是说,n(n+1)(n+2)(n+3)+1 是个完全平方数
假设两个整数中最小的是m
那么两个连续整数的乘积为 m(m+1)
如果 n(n+1)(n+2)(n+3)= m(m+1)
那么n(n+1)(n+2)(n+3)+ 1 = m(m+1)+1
那么 m(m+1)+1 也是一个完全平方数
但是显然 m2< m(m+1)+1 < (m+1)2
矛盾!
因此 n(n+1)(n+2)(n+3) ≠m(m+1)
证毕
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式