复变函数中、可去奇点、极点、本性奇点比较
这几个孤立奇点怎么去判断???最好用三个式子举例一下~~知道是展开式看~但就是看不懂、高手给标记一下看什么。。。。。...
这几个孤立奇点怎么去判断???最好用三个式子举例一下~~知道是展开式看~但就是看不懂、高手给标记一下看什么。。。。。
展开
2个回答
展开全部
所谓奇点,就是出问题的点。问题中提到的三类奇点,前提必须是孤立的。
换言之函数f在去心圆盘B(a,r)\{a}中全纯(保证a的孤立性):
1、若f(z)在a附近有界,称a为f的可去奇点。因为根据Riemann的奇点定理可以知道此时f(z)在a处的极限存在,因此可增加定义a点的函数值为极限值,利用Morera可证f全纯。可去之意由此而来!
2、若f(z)在a处的极限为∞,则称之为极点。因为此时a是1/f的可去奇点!
3、若极限不存在,称之为本性奇点。
扩展资料:
以复数作为自变量和因变量的函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。
把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。
一个复变函数如在z的某一邻域内处处有导数,则该函数必在z处有高阶导数,而且可以展成一个收敛的幂级数。
参考资料来源:百度百科--复变函数
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询