斐波那契数列有什么作用?
一、斐波那契的生活应用:
1、斐波那契数列中的斐波那契数会经常出现在生活中,比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣)、蜂巢、蜻蜓翅膀、超越数e(可以推出更多)、黄金矩形、黄金分割、等角螺线、十二平均律等。
2、斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子,直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。
二、矩形面积的价值体现在很多方面,比如:
斐波那契数列与矩形面积的生成相关,由此可以导出一个斐波那契数列的一个性质。斐波那契数列前几项的平方和可以看做不同大小的正方形,由于斐波那契的递推公式,它们可以拼成一个大的矩形,这样所有小正方形的面积之和等于大矩形的面积。
三、在科学领域没有被广泛应用。
扩展资料
1、“斐波那契数列”的定义:
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368等等。这个数列从第3项开始,每一项都等于前两项之和。
2、“斐波那契数列”的发现者:
斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨,他被人称作“比萨的列昂纳多”。
1202年,他撰写了《算盘全书》一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。
参考资料来源:百度百科--斐波那契数列