高一数学!
1个回答
展开全部
答:
f(x)=2sin²x+2√3sinxcosx-1
=1-cos2x+√3sin2x-1
=2*[(√3/2)sin2x-(1/2)cos2x]
=2sin(2x-π/6)
(1)f(x)=2sin(2x-π/6)的单调增区间满足:
2kπ-π/2<=2x-π/6<=2kπ+π/2
所以:单调增区间为[kπ-π/6,kπ+π/3],k∈Z
(2)f(x)=2sin(2x-π/6)=2sin[2(x-π/12)]可以由y=sinx向右平移π/12个单位后横坐标缩短1/2,然后纵坐标伸长2倍得到。
f(x)=2sin²x+2√3sinxcosx-1
=1-cos2x+√3sin2x-1
=2*[(√3/2)sin2x-(1/2)cos2x]
=2sin(2x-π/6)
(1)f(x)=2sin(2x-π/6)的单调增区间满足:
2kπ-π/2<=2x-π/6<=2kπ+π/2
所以:单调增区间为[kπ-π/6,kπ+π/3],k∈Z
(2)f(x)=2sin(2x-π/6)=2sin[2(x-π/12)]可以由y=sinx向右平移π/12个单位后横坐标缩短1/2,然后纵坐标伸长2倍得到。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询