高二数学必修四知识点整理

 我来答
张哥教你学
2023-02-11 · TA获得超过307个赞
知道小有建树答主
回答量:833
采纳率:100%
帮助的人:75.4万
展开全部
【 #高二# 导语】高二变化的大背景,便是文理分科(或七选三)。在对各个学科都有了初步了解后,学生们需要对自己未来的发展科目有所选择、有所侧重。这可谓是学生们第一次完全自己把握、风险未知的主动选择。 考 网高二频道为你整理了《高二数学必修四知识点整理》,助你金榜题名!

1.高二数学必修四知识点整理


  1、平面的基本性质:

  公理1:如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

  公理2:过不在一条直线上的三点,有且只有一个平面;

  公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

  2、空间点、直线、平面之间的位置关系:

  直线与直线—平行、相交、异面;

  直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);

  平面与平面—平行、相交。

  3、异面直线:

  平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);

  所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);

  两条直线不是异面直线,则两条直线平行或相交(反证);

  异面直线不同在任何一个平面内。

  求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角

2.高二数学必修四知识点整理


  1.任意角

  (1)角的分类:

  ①按旋转方向不同分为正角、负角、零角.

  ②按终边位置不同分为象限角和轴线角.

  (2)终边相同的角:

  终边与角相同的角可写成+k360(kz).

  (3)弧度制:

  ①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.

  ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径.

  ③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.

  ④弧度与角度的换算:360弧度;180弧度.

  ⑤弧长公式:l=||r,扇形面积公式:s扇形=lr=||r2.

  2.任意角的三角函数

  (1)任意角的三角函数定义:

  设是一个任意角,角的终边与单位圆交于点p(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.

  (2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.

  3.三角函数线

  设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点p,过p作pm垂直于x轴于m.由三角函数的定义知,点p的坐标为(cos_,sin_),即p(cos_,sin_),其中cos=om,sin=mp,单位圆与x轴的正半轴交于点a,单位圆在a点的切线与的终边或其反向延长线相交于点t,则tan=at.我们把有向线段om、mp、at叫做的余弦线、正弦线、正切线.

3.高二数学必修四知识点整理


  1.椭圆

  椭圆的定义是椭圆章节的基础内容,高考对本节内容的考查可能仍然将以求椭圆的方程和研究椭圆的性质为主,两种题型均有可能出现椭圆方面的知识与向量等知识的综合考查命题趋势较强。

  2.双曲线

  标准方程的求法:双曲线标准方程最常用的两种方法是定义法和待定系数法.利用定义法求解,首先要熟悉双曲线的定义,只要知道双曲线的焦点和双曲线上的任意一点的坐标都可以运用定义法求解其标准方程;解法二是利用待定系数法求解,是求双曲线方程的根本方法之一,其思想是根据题目中的条件确定双曲线方程中的系数a,b,主要是解方程组;解法三是利用共焦点曲线系方程求解,其要点是根据题目中的一个条件写出含一个参数的共焦点的二次曲线系方程,再根据另外一个条件求出这个参数.

  3.抛物线

  1)利用已知条件求抛物线方程,一般有两种方法:待定系数法和轨迹法。

  2)韦达定理的熟练运用,可以防止运算复杂的焦点坐标,巧妙利用抛物线的性质进行解题。

  3)焦点弦的几何性质是答题中容易忽略的问题,在复杂的求解抛物线方程中,运用好这方面的知识能够少走很多弯路。

4.高二数学必修四知识点整理


  复数的概念:

  形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。

  复数的表示:

  复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

  复数的几何意义:

  (1)复平面、实轴、虚轴:

  点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数

  (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系

  这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

  这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

  复数的模:

  复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=

  虚数单位i:

  (1)它的平方等于-1,即i2=-1;

  (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立

  (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  复数模的性质:

  复数与实数、虚数、纯虚数及0的关系:

  对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

5.高二数学必修四知识点整理

  向量的向量积

  定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

  向量的向量积性质:

  ∣a×b∣是以a和b为边的平行四边形面积。

  a×a=0。

  a‖b〈=〉a×b=0。

  向量的向量积运算律

  a×b=-b×a;

  (λa)×b=λ(a×b)=a×(λb);

  (a+b)×c=a×c+b×c.

  注:向量没有除法,“向量AB/向量CD”是没有意义的。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式