求高数高手帮忙解一下下面的题,急!!!
2个回答
展开全部
13.求由方程x/z=ln(z/y)所确定的函数z=f(x,y)的全微分。
解:作函数F(x,y,z)=x/z-ln(z/y)=0
则∂z/∂x=-(∂F/∂x)/(∂F/∂z)=-(1/z)/[-(x/z²)-(1/y)/(z/y)]=z/(x+z)
∂z/∂y=-(∂F/∂y)/(∂F/∂z)=-[(-z/y²)/(z/y)]/[-(x/z²)-(1/y)/(z/y)]
=-z²/[y(x+z)]
故dz=[z/(x+z)]dx-[z²/y(x+z)]dy
19.求由方程x+2y+z-2√(xyz)=0所确定的函数z=f(x,y)的全微分。
解:设F(x,y,z)=x+2y+z-2√(xyz)=0,则:
∂z/∂x=-(∂F/∂x)/(∂F/∂z)=-[1-(yz/√xyz)]/[1-(xy/√xyz)]
=-[√(xyz)-yz]/[√(xyz)-xy]
∂z/∂y=-(∂F/∂y)/(∂F/∂z)=-[2-(xz/√xyz)]/[[1-(xy/√xyz)]
=-[2√(xyz)-xz]/[√(xyz)-xy]
故dz={-[√(xyz)-yz]dx-[2√(xyz)-xz]dy}/[√(xyz)-xy]
20.求微分方程y'+x/y=0满足初始条件y(0)=4的特解
解:dy/dx=-x/y,分离变量得ydy=-xdx,
积分之得通解为 y²/2=-x²/2+C;
代入初始条件y(0)=4得C=8,故得特解为 y²=-x²+16
解:作函数F(x,y,z)=x/z-ln(z/y)=0
则∂z/∂x=-(∂F/∂x)/(∂F/∂z)=-(1/z)/[-(x/z²)-(1/y)/(z/y)]=z/(x+z)
∂z/∂y=-(∂F/∂y)/(∂F/∂z)=-[(-z/y²)/(z/y)]/[-(x/z²)-(1/y)/(z/y)]
=-z²/[y(x+z)]
故dz=[z/(x+z)]dx-[z²/y(x+z)]dy
19.求由方程x+2y+z-2√(xyz)=0所确定的函数z=f(x,y)的全微分。
解:设F(x,y,z)=x+2y+z-2√(xyz)=0,则:
∂z/∂x=-(∂F/∂x)/(∂F/∂z)=-[1-(yz/√xyz)]/[1-(xy/√xyz)]
=-[√(xyz)-yz]/[√(xyz)-xy]
∂z/∂y=-(∂F/∂y)/(∂F/∂z)=-[2-(xz/√xyz)]/[[1-(xy/√xyz)]
=-[2√(xyz)-xz]/[√(xyz)-xy]
故dz={-[√(xyz)-yz]dx-[2√(xyz)-xz]dy}/[√(xyz)-xy]
20.求微分方程y'+x/y=0满足初始条件y(0)=4的特解
解:dy/dx=-x/y,分离变量得ydy=-xdx,
积分之得通解为 y²/2=-x²/2+C;
代入初始条件y(0)=4得C=8,故得特解为 y²=-x²+16
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询