已知函数f(x)=sin^2x+2根号3sinxcosx+3cos^2x求下详细答案,谢谢了
1个回答
展开全部
答:f(x)=sin²x+2√3sinxcosx+3cos²x
=1+√3sin2x+cos2x+1
=2*[(√3/2)sin2x+(1/2)cos2x]+2
=2sin(2x+π/6)+2
(1)f(a)=2sin(2a+π/6)+2=3
sin(2a+π/6)=1/2
因为:0<a<π
所以:2a+π/6=5π/6
所以:a=π/3
(2)f(x)=2sin(2x+π/6)+2
0<=x<=π,π/6<=2x+π/6<=13π/6
所以:单调递增区间满足π/6<=2x+π/6<=π/2或者3π/2<=2x+π/6<=13π/6
所以:单调增区间为[0,π/3] ∪ [2π/3,π]
(3)f(x)=2sin(2x+π/6)+2>m-3在 [π/4,π/2]上恒成立
sin(2x+π/6)>(m-5)/2
π/4<=x<=π/2,2π/3<=2x+π/6<=7π/6
所以:sin(2x+π/6)>=sin(7π/6)=-1/2>(m-5)/3
解得:m<7/2
=1+√3sin2x+cos2x+1
=2*[(√3/2)sin2x+(1/2)cos2x]+2
=2sin(2x+π/6)+2
(1)f(a)=2sin(2a+π/6)+2=3
sin(2a+π/6)=1/2
因为:0<a<π
所以:2a+π/6=5π/6
所以:a=π/3
(2)f(x)=2sin(2x+π/6)+2
0<=x<=π,π/6<=2x+π/6<=13π/6
所以:单调递增区间满足π/6<=2x+π/6<=π/2或者3π/2<=2x+π/6<=13π/6
所以:单调增区间为[0,π/3] ∪ [2π/3,π]
(3)f(x)=2sin(2x+π/6)+2>m-3在 [π/4,π/2]上恒成立
sin(2x+π/6)>(m-5)/2
π/4<=x<=π/2,2π/3<=2x+π/6<=7π/6
所以:sin(2x+π/6)>=sin(7π/6)=-1/2>(m-5)/3
解得:m<7/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询